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genus
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1 The results

We work over C.

Definition 1.1. A K3 surface of genus g is a K3 surface S (a simply connected projective surface
with trivial canonical bundle and ADE singularities at worst) with an ample line bundle L on S
such that ¢; (L) € H?(S,Z) is primitive and L? = 2g — 2.

Example 1.2. Double covers of plane sextic curves.
Let F¢ be the coarse moduli space of the K3 surfaces of genus g.
Theorem 1.3. F, is a quasi-projective variety of dimension 19, but Fy is not compact.
For g = 2,3, there are works of Shah and Laza-O’Grady. We consider the case ¢ = 4. Let
* P,; C Fy be the primitive divisor parametrizing hyperelliptic K3 (S,L), i.e., ¢ : S --» P4

is degree 2 map;

* Py C Fj the primitive divisor parametrizing unigonal K3, i.e.,, ¢y : S --» P4 maps onto a
rational curve;

* P3; C Fj the primitive divisor parametrizing K3 of genus 4 which is a complete intersection
of a singular quadratic and a cubic.

and denote by
]:lf = ]:4 - (Pl,l U PZ,l)-

We defined the HKL model
Fu(s) := Proj (D HO(F{, m(A — sPs;)

m>0

7)), s€[0,1]NQ (1)

By the frame work of Looijenga,
Fa ( 0) _ fZLoo
where ?jmo is Looijenga’s compactification with respect to divisors P; 1 + P> 1. We find that
Fa(1) = 100(3)]//SO(4).

We hope the biratonal map
.7"4(0) -—> f4(1)

can be explicitly resolved as we vary s € [0,1] N Q. So we proposal the following conjecture to
predict the birational behaviors of the HKL model 1:
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HKL Conjecture 1.4. Notation as above,

1. The section rings @ H(F;, m(A —sPs) | ;) are finitely generated for s € [0,1] N Q, i.e., Fu(s)
m>0
is a projective variety.

2. Wall-crossing: Let s, be the n-th value of the set ( Wall )
117111 11111111

o780 0T 23 1719203
Then for any s, s’ € (Su, Sp+1), Fa(s) = Fu(s'). Write
Fu(sn, sn+1) = Fa(s)

forany s € (Sp, Sp+1). As s crosses the wall s, there is a birational map (typically a flip or divisorial
contraction) :

Fa(Sn—1,5n) Fu(Sn, Sn+1)

./_"4(571)

3. The center of the flip proper transformation of a Shimura subvariety in Fy.
Our main result is

Theorem 1.5 (Greer-Laza-Li-Si-Tian, 2020). The HKL conjecture 1.4 is true for s € [%, 1] ors = 0.

2 The motivation and background

2.1 Motivation 1: Generalization of Hassett-Keel

Recall the Delige-Mumford’s moduli spaces
M, = {iso classes of smooth curves of genus g} U {nodal}

compactifies moduli spaces M, of smooth curves of genus g.
The boundary A is a union of divisors A;, 0 < g < L%J , where

g1 =i kﬁg —i>i
Ai = { }/ =.
Theorem 2.1 (Arbarello-Cornalba, 1987). Pic(M,) ® Q = Q[Ay, - - -, AL% I A] where
A= a(m(wr))
is the Hodge line bundle for universal family C — M.

* 2005, Hassett study log canonical models for M.



* 2009, 2011, after [BCHM], Hassett-Hyeon study the log canonical models

1+ 8

i (8) 1= Proj (@) H(F, (K, + -+ 1

m>0

A+ Bdo+--+BAg))), BE[0,1]NQ

M_g(B) compares various compactifications of My, for example,

1. By the classical work of Harris etc,

Mgy(B) = My, for % <g<l1

2. Hassett-Hyeon showed that

_ — 7 9
~ M = < =
Mg(B) = M, , for 10<g_11

where the space MES is the coarse moduli space of curves of genus ¢ with cusps at worst
and without elliptic tails.

Moreover, they find as the coefficient B crosses %, the birational morphism of these two
coarse moduli space is a divisorial contraction

— 7
1] — M 0

— 9
Mg( g(ﬁ; ﬁ]/

ﬁ/
which contracts A; to the loci of curves with a cusp.

2.2 Motivation 2: Comparing various compactification

1. Hodge theoretical side (Arithmetic compactifications)

The primitive part of second cohomology group H(S, Z)prim = C1 (L)* is isometric to the
even lattice
Ag = Zw ® U2 @ Eg(—1)%?,

where (w,w) = —(2¢ — 2). The global Torelli theorem implies the period map
p:Fg— D8/Ty,
is isomorphic where
D8:={zeP(A;®C): (z,2) =0, (z,Z) >0}
is the period domain and I’y is the monodromy group.

As a locally symmetric variety, F, admits many compactifications from arithemtic side, for
example,

* 1966, Baily-Borel: construct compactification ;.



Theorem 2.2 (Baily-Borel 1966). The graded ring @ My (T) is a finitely generated C-algebra
k>0

and there is isomorphism

Fg == Proj (P Mi(T)) (2)

k>0
where My (T') is the space of weight k modular forms with level T
Mi(T) :={ f: Dy — C| f holomorphic, f(Az) = A*f(z), A € C*
fly-z)=f(z), yel'}
* 1975, Ash-Mumford-Rappoet-Tai, Toroidal compactifcation.

* 2003, Looijenga: Inspired by Baily-Borel, develop a compactification for a complement
of hyperplane arrangement.

Fi 2
o N
Nk s Fi
2. Projective model side (GIT compactifications): for K3 surfaces (S, L) of low genus, its pro-
jective model, i.e., the rational map
¢r: S--»1P8 =PH"(S,L)" 3)
can be classified due to the work of Saint Donat , Mukai etc. For example,

(a) ¢ = 2 ¢ is either a double cover of IP? branched along a C € |O(6] or onto a conic in
P2,

(b) ¢ =4,if [S,L] € Fa— (P11 UPy1), then ¢y is birational onto a (2,3) complete intersec-
tions in IP3.

Once the projective model is explicit given, we can construct their Hilbert scheme (or chow
variety) as parameter space explicitly. Then Mumford’s GIT provides a natural compactifi-
cation.

For ¢ = 4, we can construct VGIT: @ C P* x |Op:(2)| be the universal quadratic. Define
vector bundle

E:=(p2):p10(2)
where p1 : P4 x |Ops(2)| — P*and p; : P* x |Ops(2)] — |Ops(2)] are two projections. Note
that that E is sitting in the following exact sequence,
0 — H°(IP*, 0(1)) ®c Opu(—1) — H*(P*, O(3)) ®c Opu — E — 0
The associated projective bundle
7 :P(E) — |Ops(2)| = P
parametrizes all (2, 3)-schemes in IP”, whose fiber at [g] is

Ey = {f € |Ops(3)| : g is not a factor of f}.

4



The Picard group of IP(E) is spanned by 77 = 7*Opu(1) and h = Op g (1). Set
Ht =th + 1,

then H; is ample if and only if 0 < ¢ < %
We define the VGIT model M(¢) as

9M(t) = P(E)//; SL(5) := ProjR(PP(E), H;)"®)
with respect to the line bundle H;.

3. K-stability or KSBA side (Birtional geometry): just mention ADL’s work on compactifying
plane setics using K-stability.

4. Others - - -.

3 Proof

Our proof based on VGIT theory and NL-number computations.
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