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1 The results

We work over C.

Definition 1.1. A K3 surface of genus g is a K3 surface S (a simply connected projective surface
with trivial canonical bundle and ADE singularities at worst) with an ample line bundle L on S
such that c1(L) ∈ H2(S, Z) is primitive and L2 = 2g− 2.

Example 1.2. Double covers of plane sextic curves.

Let Fg be the coarse moduli space of the K3 surfaces of genus g.

Theorem 1.3. Fg is a quasi-projective variety of dimension 19, but Fg is not compact.

For g = 2, 3, there are works of Shah and Laza-O’Grady. We consider the case g = 4. Let

• P2,1 ⊂ F4 be the primitive divisor parametrizing hyperelliptic K3 (S, L), i.e., φL : S 99K P4

is degree 2 map;

• P1,1 ⊂ F4 the primitive divisor parametrizing unigonal K3, i.e., φL : S 99K P4 maps onto a
rational curve;

• P3,1 ⊂ F4 the primitive divisor parametrizing K3 of genus 4 which is a complete intersection
of a singular quadratic and a cubic.

and denote by
F ◦4 := F4 − (P1,1 ∪ P2,1).

We defined the HKL model

F4(s) := Proj (
⊕
m≥0

H0(F ◦4 , m(λ− sP3,1)|F ◦4 )), s ∈ [0, 1] ∩Q (1)

By the frame work of Looijenga,
F4(0) = F ◦4

Loo

where F ◦4
Loo

is Looijenga’s compactification with respect to divisors P1,1 + P2,1. We find that

F4(1) ∼= |OQ(3)|//SO(4).

We hope the biratonal map
F4(0) 99K F4(1)

can be explicitly resolved as we vary s ∈ [0, 1] ∩Q. So we proposal the following conjecture to
predict the birational behaviors of the HKL model 1:
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HKL Conjecture 1.4. Notation as above,

1. The section rings
⊕

m≥0
H0(F ◦4 , m(λ− sP3,1)|F ◦4 ) are finitely generated for s ∈ [0, 1] ∩Q, i.e., F4(s)

is a projective variety.

2. Wall-crossing: Let sn be the n-th value of the set ( Wall )
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Then for any s, s′ ∈ (sn, sn+1), F4(s) ∼= F4(s′). Write

F4(sn, sn+1) = F4(s)

for any s ∈ (sn, sn+1). As s crosses the wall sn, there is a birational map (typically a flip or divisorial
contraction) :

F4(sn−1, sn) F4(sn, sn+1)

F4(sn)

f−n f+n

3. The center of the flip proper transformation of a Shimura subvariety in F4.

Our main result is

Theorem 1.5 (Greer-Laza-Li-Si-Tian, 2020). The HKL conjecture 1.4 is true for s ∈ [ 1
3 , 1] or s = 0.

2 The motivation and background

2.1 Motivation 1: Generalization of Hassett-Keel

Recall the Delige-Mumford’s moduli spaces

Mg = {iso classes of smooth curves of genus g} ∪ {nodal}

compactifies moduli spaces Mg of smooth curves of genus g.
The boundary ∆ is a union of divisors ∆i, 0 ≤ g ≤ b g

2 c, where

∆i := {

g1 = i g2 = g− i > i

}/ ∼= .

Theorem 2.1 (Arbarello-Cornalba, 1987). Pic(Mg)⊗Q = Q[∆0, · · · , ∆b g
2 c

, λ] where

λ = c1(π∗(ωπ))

is the Hodge line bundle for universal family C → Mg.

• 2005, Hassett study log canonical models for M2.
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• 2009, 2011, after [BCHM], Hassett-Hyeon study the log canonical models

Mg(β) := Proj (
⊕
m≥0

H0(Mg, m(KMg
+ β∆0 +

1 + β

2
∆1 + β∆2 + · · ·+ β∆b g

2 c
)), β ∈ [0, 1] ∩Q

Mg(β) compares various compactifications of Mg, for example,

1. By the classical work of Harris etc,

Mg(β) ∼= Mg, for
9
11

< g ≤ 1

2. Hassett-Hyeon showed that

Mg(β) ∼= Mps
g , for

7
10

< g ≤ 9
11

where the space Mps
g is the coarse moduli space of curves of genus g with cusps at worst

and without elliptic tails.

Moreover, they find as the coefficient β crosses 9
11 , the birational morphism of these two

coarse moduli space is a divisorial contraction

Mg(
9
11

, 1] −→ Mg(
7
10

,
9

11
],

which contracts ∆1 to the loci of curves with a cusp.

2.2 Motivation 2: Comparing various compactification

1. Hodge theoretical side (Arithmetic compactifications)

The primitive part of second cohomology group H2(S, Z)prim := c1(L)⊥ is isometric to the
even lattice

Λg = Zω⊕U⊕2 ⊕ E8(−1)⊕2,

where 〈ω, ω〉 = −(2g− 2). The global Torelli theorem implies the period map

p : Fg → Dg/Γg,

is isomorphic where

Dg := {z ∈ P(Λg ⊗C) : 〈z, z〉 = 0, 〈z, z〉 > 0}+

is the period domain and Γg is the monodromy group.

As a locally symmetric variety, Fg admits many compactifications from arithemtic side, for
example,

• 1966, Baily-Borel: construct compactification F ∗g .
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Theorem 2.2 (Baily-Borel 1966). The graded ring
⊕
k≥0

Mk(Γ) is a finitely generated C-algebra

and there is isomorphism
F ∗g ∼= Proj (

⊕
k≥0

Mk(Γ)) (2)

where Mk(Γ) is the space of weight k modular forms with level Γ

Mk(Γ) := { f : Dg → C | f holomorphic, f (λz) = λk f (z), λ ∈ C∗

f (γ · z) = f (z), γ ∈ Γ }.

• 1975, Ash-Mumford-Rappoet-Tai, Toroidal compactifcation.

• 2003, Looijenga: Inspired by Baily-Borel, develop a compactification for a complement
of hyperplane arrangement.

F̃H4
π1
��

π2 //

π̃

!!

FΣ(H)
4

πH

��

FH4 // F ∗4

2. Projective model side (GIT compactifications): for K3 surfaces (S, L) of low genus, its pro-
jective model, i.e., the rational map

φL : S 99K Pg = PH0(S, L)∨ (3)

can be classified due to the work of Saint Donat , Mukai etc. For example,

(a) g = 2 φL is either a double cover of P2 branched along a C ∈ |O(6| or onto a conic in
P2.

(b) g = 4, if [S, L] ∈ F4 − (P1,1 ∪ P2,1), then φL is birational onto a (2, 3) complete intersec-
tions in P3.

Once the projective model is explicit given, we can construct their Hilbert scheme (or chow
variety) as parameter space explicitly. Then Mumford’s GIT provides a natural compactifi-
cation.

For g = 4, we can construct VGIT: Q ⊆ P4 × |OP4(2)| be the universal quadratic. Define
vector bundle

E := (p2)∗p∗1O(2)
where p1 : P4× |OP4(2)| → P4 and p1 : P4× |OP4(2)| → |OP4(2)| are two projections. Note
that that E is sitting in the following exact sequence,

0→ H0(P4,O(1))⊗C OP14(−1)→ H0(P4,O(3))⊗C OP14 → E→ 0

The associated projective bundle

π : P(E)→ |OP4(2)| ∼= P14

parametrizes all (2, 3)-schemes in Pn, whose fiber at [q] is

E[q] = { f ∈ |OP4(3)| : q is not a factor of f }.
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The Picard group of P(E) is spanned by η = π∗OP14(1) and h = OP(E)(1). Set

Ht = th + η,

then Ht is ample if and only if 0 < t < 1
2 .

We define the VGIT model M(t) as

M(t) = P(E)//t SL(5) := ProjR(P(E), Ht)
SL(5)

with respect to the line bundle Ht.

3. K-stability or KSBA side (Birtional geometry): just mention ADL’s work on compactifying
plane setics using K-stability.

4. Others · · · .

3 Proof

Our proof based on VGIT theory and NL-number computations.
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